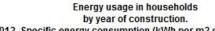
BIM based deep building renovation optimisation for sustainability

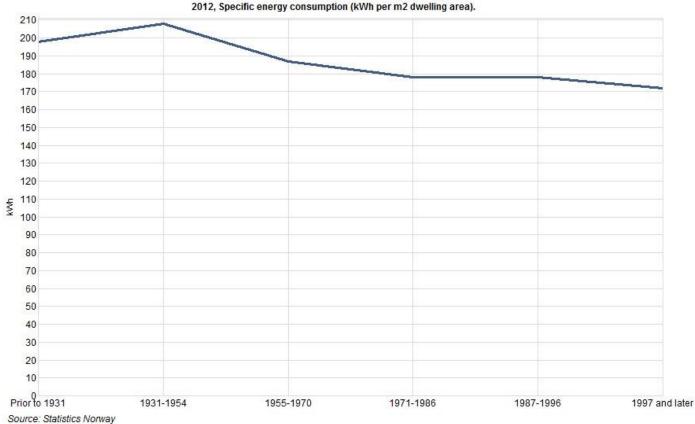
Lizhen Huang, Guri Krigsvoll, Bjørn Arild Godager

Department of manufacturing and civil engineering NTNU, Norwegian University of Science and Technology

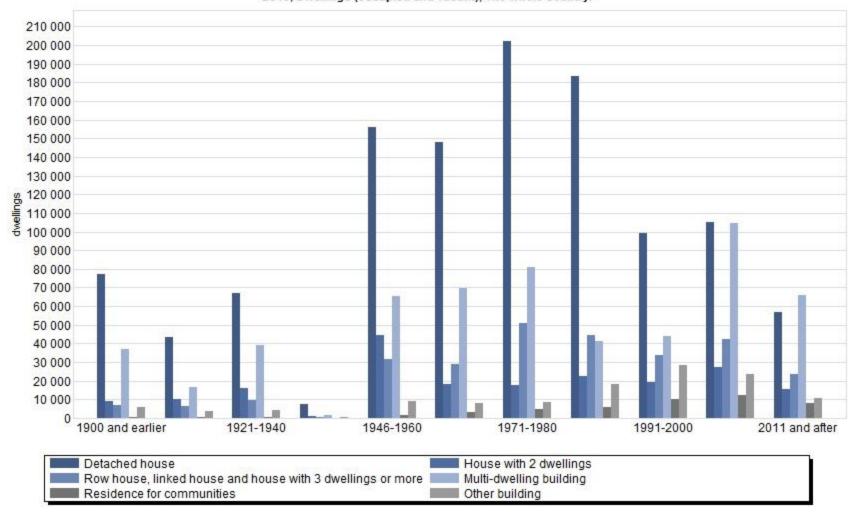
Outline

- Introduction
- Method
- Case study
- Discussion and Conclusion





Introduction



Dwellings, by type of building and year of construction of the building. 2016, Dwellings (occupied and vacant), The whole country.

Source: Statistics Norway

Organisers:

Småhus	Levert energi pr m² oppvarmet BRA (kWh/m²)							
	Α	В	С	D	E	F	G	
Oppvarmet BRA (m²)	Lavere enn eller lik	Lavere enn eller lik	Lavere enn eller lik	Lavere enn eller lik	Lavere enn eller lik	Lavere enn eller lik	Ingen grense	
50	111,00	152,00	195,00	257,00	321,00	410,00	> F	
75	105,67	141,33	178,33	229,67	282,33	356,67	> F	
100	103,00	136,00	170,00	216,00	263,00	330,00	> F	
125	101,40	132,80	165,00	207,80	251,40	314,00	> F	
150	100,33	130,67	161,67	202,33	243,67	303,33	> F	
200	99,00	128,00	157,50	195,50	234,00	290,00	> F	
300	97,67	125,33	153,33	188,67	224,33	276,67	> F	
400	97,00	124,00	151,25	185,25	219,50	270,00	> F	
500	96,60	123,20	150,00	183,20	216,60	266,00	> F	

Øvre grense for karakter C er basert på nivå for TEK 2010.

Method

- BIM: On-site survey, Terrestrial Laser Scanning or Data Capture with Drone
- Life cycle analysis
 - FU:the off-site preparation, on-site renovation, use and demolition of one building over the lifetime of 50 years
 - Data: On-site data, simulation results, EPD Norge and Ecoinvent database, the cost database in Holte (following the Norwegian standard NS3450) Impacts:Climate change (GWP) and Particulate matter formation (PMFP)

Life cycle environmental impacts

•
$$E_{i_{tot}} = \sum_{E_i} (E_{i_{ot}} + E_{i_r} + E_{i_o} + E_{i_d} + E_{i_e})$$

Life cycle cost

$$C_{i_{tot}} = \sum_{E_i} \left(C_{i_{ot}} + C_{i_r} + C_{i_o} + C_{i_d} + C_{i_e} \right)$$

Optimization

MinLCC, MinLCEI, $MinLCE_c$, & $MaxLCE_p$

Subject to:

 $0 \le LCC \le C_c$

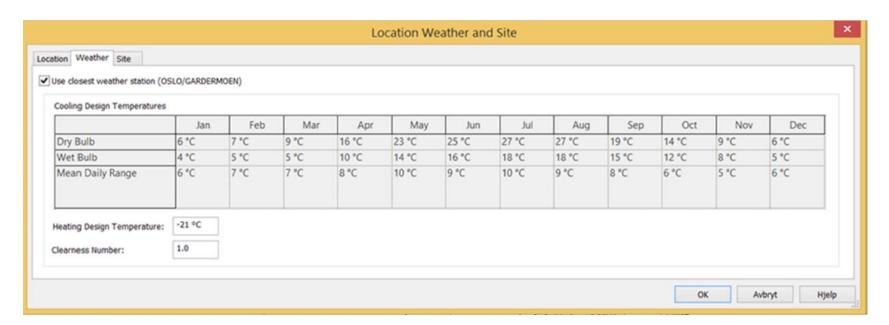
 $0 \le LCEI \le C_{EI}$

 $0 \le LCE_C \le C_E / LCE_P$

Level 1	Level 2	Level 3	Leve4		
Deep renovation optimization solutions	Theme	Criteria	Indicators		
	Environ mental impacts	Local impacts	PM10 Emissions		
	(life cycle perspecti ve)	Global impacts	GHGs emissions		
	Resourc e	Energy	Energy production		
	6		Energy consumption		
	Cost	Life cycle cost	Life cycle cost		

Case study

- A detached house (226 m²) located close to Oslo built in 1966 is selected to be a case study for the project.
- It is supposed to be two part: 1) to renovate it following the existing building code in Norway (TEK10), 2) to install the solar PV panel to produce the enough electricity for the building.



- The average sunlight hours in Oslo area are 1632 hours annually [23].
- The installation of solar PV will got the 10000 NOK (Norwegian kroner) and 1250 NOK per kW (up to 15 kW) subsides from ENOVA.



PLAN U-ET.

Solutions	energy saving after renovation (kWh/year)	energy production requirement (kWh/year)	GWP (ton CO₂eq)	PMFP(kg PM10 eq)	LCC(million NOK)
Option 1: Change roof, facade, and window+ install the solar pv	25306	35780	56.13	282.75	1.04
Option 2: Change roof (not increasing the insulation quality) facade, and window+ install the solar pv	20507	40579	62.69	48.59	1.06

Discussion and conclusion

- The saving of energy for the renovated to be current building code on roof, façade and windows will save energy use around 25 MWh annually and 1.3 million NOK energy cost in total life.
- The renovation of housing itself will be more cost-effective than the installation of PV panel. The most cost effective renovation part is the façade.
- The saving of the GWP of the renovation is not as significant as the energy saving and life cost saving.

Thank you

