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Outline

« Overview of smart grid, automated demand response

(ADR)
« Challenges with ADR In existing buildings
« Methods to implement demand response
 Applications to a university campus
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Demand Response Scenarios

A. High Demand Relative to Supply:
O Reduce peak demand during high load conditions or grid “stress”
O Typically a summer cooling issue (occasionally in winter heating
In some locations)
B. High or Variable Supply Relative to Demand:

O How to manage peak production from distributed generation
systems (renewable, CHP)?

O Germany starting in 2013;
Becoming more common in parts of U.S. (Texas wind; CA solar)
C. Managing for Low Carbon Energy Production:
O Management of demand to match type of supply available
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Challenges with Existing
Buildings on a Typical Campus

« ADR involves sophisticated communication and control
capability

« Variability of building types, control systems
« Cost to upgrade legacy control systems

« Smart grid control features becoming available at the
component or subsystem level




Execution of Demand Response

* Buildings typically contain both deferrable and non-
deferrable electric loads for the same end-users.

« Key guestions to answer:
« What to curtail?
 How long?
« How to verify (and who does the verifying)?
« Comfort considerations
« Safety, security concerns
« Control and monitoring

« Externally generated versus internally created
events:
« External by utility or outside agent

* Internal at owner’s discretion (demand limiting or peak
shaving) - May be more effective
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What “Tools” Are Available for DR?

* The obvious first choices:
« HVAC systems
e Setpoints
 Thermal energy storage
« Lighting
« Perhaps you have considered:
 Plug load management
« General overall energy conservation effects

« Other more unigue considerations

* Non-traditional thermal energy storage (pre-cooling
chilled water supply for example)
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August 2016 Testing Example

Changed zone setpoints by +1.7°C (3°F)
Changed supply air setpoint also + 1.7°C

Changed upper limit for AHU fan speed from 100% to
90% of maximum (when possible)

Step schedule change in network chilled water supply
temperature, pre-cooling first before ADR to 3.9°C,
then letting temperature rise to 7.2°C during ADR

Energy consumption monitoring and thermal comfort
surveys: Test date compared to baseline date (day
before)
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August 2016 Testing Results
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Monday 42 507 2. 447 129.0% 128.0% 92 6
Tuesday 36,109 2211 109.6% 115.7% 90.0
Wednesday 32 939 1.911 - : 86.9
Thursday 36,584 2,132 111.1% 111.5% 87.0
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Lessons Learned from this Testing

« Could temperature setpoints overall could be altered, or
at least during higher cost time periods?

* Timing and scheduling
« What are the optimal setpoint changes?
« What times to start and stop?
« How to avoid the rebound effect ('soft-start’)?

* Most difficult... Need to be adaptable to the technologies
In place
« How to implement with automation and controls not

?y deS|gned for ‘automated’ demand response
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Next Steps: Thermal Comfort Testing In
Real World (How Far Can We Go0?)

07 ' .
Initial results from 2016, ongoing testing now =:§ Coad
04 Just Right
LISty Werm
.
I 700 Hot

o
»

o
&

Thermal Vote Frequency

0y -
02
I- -I-—. P S — bemed bed . P I
245 265 1)

Classroom Temperature C

[nternational Co-owners

| ot ‘ i & A A Glabal Aliance



Thank you
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Tom Lawrence
lawrence@engr.uga.edu




